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1 Introduction

In its most classical expression, an individual�s choice behavior is said to be rational if it

results (1) from choosing the best available alternative according to (2) a complete, re�exive

and transitive preference relation on the set of alternatives. In view of mounting evidence

against the observable implications of this simple model of choice, a growing literature has

arisen that proposes a variety of departures from it.

Many of these departures, but not ours, assume that agent�s choices are guided by

considerations that cannot be expressed by means of a single preference. We propose a

notion of r�rationality based on the idea that individual choices are indeed based on a
well-de�ned preference order, but that agents may be content with selecting one out of their

r�best alternatives. This provides a purely ordinal and relative version of the classical
idea of satis�cing behavior. No level of satisfaction is exogenously �xed, agents are not

full maximizers, but they follow a clear pattern of behavior whose consequences generate

testable implications.

For any r ranging from 1 to the total number n of alternatives, we provide necessary

and su¢ cient conditions for choice functions to be r�rationalizable.
Let us informally illustrate the basic intuition for our new conditions by �rst recall-

ing what we know about classical rational choice in our setting, and then comparing its

implications with those of the new notion of r�rationality.
Choice functions satisfying classical rationalizability (now called 1�rationalizability)

are usually characterized in our simple setting as the ones satisfying the following necessary

and su¢ cient contraction condition: if an alternative x is chosen for a set B, x must also

be chosen from any subset of B that still contains it. This condition provides a �top

down� constructive method for the unique rationalization associated to a rationalizable

choice function. Just rank in �rst place the alternative that is chosen when all of them are

available, then rank second the one that is chosen after just deleting the �rst, and so on.

Notice, however, that we could have formulated di¤erently this necessary and su¢ cient

conditions for 1�rationalizability. Here is another way to describe it, which is the one
inspiring the axioms we use in our general case. Take a choice function. Consider the set

of all alternatives that are chosen by that function for some subset of alternatives that is

not a singleton. If the choice function is 1�rationalizable, there must be one and only
one alternative that is never chosen, and that should be the one ranking in last place in

the rationalizing order. If we look at the family of all non-singleton subsets that do not

contain this last alternative, and then at all choices for these subsets, again there must be

one and only one alternative that does not appear, and it must be ranked second to last.
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This �bottom up�construction is the hint to an alternative characterization of classical

rationality, through the requirement that choices in a decreasing sequence of sets must

exclude one alternative at a time.

Now, the same idea can be tried as a starting point to identify conditions for r�rationalizability.
For a given choice function, consider those alternatives that are chosen from subsets of size

r+1 or larger. If all alternatives were in this set, then the choice function could not be ra-

tionalized, because the alternative that is last in an eventual rationalizing order can never

be chosen. Hence, some alternatives must never be chosen, and they must be at most r.

If only one is missing, we can assure that it is last in a rationalizing order, if such exists.

If several alternatives are never chosen, we�ll show that if a rationalizing order exists, then

there is one that places each of these non-chosen alternatives in the last position. Select

any one of them to be placed last in the rationalizing order, and look at all subsets that

do not contain it but whose cardinality is still above r. Again, some alternative other than

the deleted one must never be chosen out of this restricted family of subsets, and so on.

Our characterization result is based on a precise formalization of this idea, leading to a

natural extension of the axiom that applies to 1�rationalizable choice functions. Notice,
however, that our rationalizations will not be unique for r di¤erent than 1.

Here are two examples that anticipate the kind of issues we deal with.

i) A choice function that is not 1�rationalizable but is 2�rationalizable. Let X =

fa1; a2; a3; a4g: Let F such that for any B with fa1; a4g � B; F (B) = a4 and otherwise

F (B) = ai where i is the minimum value in f1; 2; 3; 4g such that ai 2 B: This choice

function F is not 1�rationalizable . We can see this because F (fa1; a2; a4g) = a4 and

F (fa2; a4g) = a2 a violation of the standard contraction consistency condition. But we

can also see that it cannot be 1�rationalizable because for any ai 2 X; there exists B � X
with #B � 2 such that F (B) = ai:
Yet, notice that our choice function F is 2�rationalizable by the preference orders R,

R0;where a4Ra1Ra2Ra3 and a1R0a4R0a2R0a3:

ii) A choice function that is neither 1 nor 2�rationalizable, but is 3�rationalizable.
Let again X = fa1; a2; a3; a4g Let F such that F (X) = a3; F (B) = a4 for any B with

fa1; a4g � B  X; and otherwise F (B) = ai where i is the minimum value in f1; 2; 3; 4g
such that ai 2 B: Notice that this is the same function than in the preceding case, except for
its value in X. Yet, now the function is no longer 2�rationalizable, but is 3�rationalizable
by any order that does not rank a3 in the last position.

Now, any choice function F on a set of size n is obviously n�rationalizable, and in fact
also (n� 1)�rationalizable, as shown later. Hence, we can properly speak about the level
of rationality exhibited by any choice function F as given by the minimum value r(F ) for
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which F is r(F )�rationalizable.1 We provide an algorithm to compute the rationality level
r(F ) associated with any given choice function, thus providing that notion with operational

content.

We then propose an even more �exible model of choice, where the level of rationality

that an agent displays when choosing from any given set B may vary with the set under

consideration. An agent�s level of rationality at each set can be described by a function

� where �(B) is the rank required for satisfaction when choosing from B: Then, a choice

function will be ��rationalizable if for some order R; the choice from any set B is among

the �(B)�best ranked alternatives according to R: And, again, we fully characterize the
choice functions that are � rationalizable, for any given �:

The notion that agents may decide to stop short of choosing their best alternative has

deep roots and multiple expressions. Recent work on demand theory by Gabaix (2014),

Aguiar and Serrano (2914), Frick (2016), Halevy, Peisetz and Zrill (2015), and Halevy and

Zrill (2016), also assumes non-maximizing behavior. In a di¤erent vein, Amartya Sen (see

Sen (1993), for example) has described the apparently irrational behavior of agents who

consistently choose their second best out of the set of alternatives they are proposed. The

consequences of that behavior are discussed in Baigent and Gaertner (2010). And our

more direct reference point is the idea of satis�cing behavior, �rst introduced by Herbert

Simon (1955). When individuals are guided by utility functions, and the comparisons

among utility levels have a meaning, one can think of satis�cing behavior as the one where

the individual chooses among those alternatives that guarantee her a minimum, satis�cing

level of utility. Our purpose here is to develop a theory of satis�cing behavior that is purely

ordinal, and thus cannot appeal to any exogenous level of utility as a reference. Within

the ordinal context, one could still think of a formulation where some absolute level of

satisfaction, identi�ed with the one provided by some exogenously �xed alternative, could

set the frontier between satisfactory choices and those that are not. This is the assumption

in recent work by Caplin, Dean, and Martin (2011), Papi (2012), Rubinstein and Salant

(2006), and Tyson (2008). Our formulation is in a similar spirit, but our notion of a

satis�cing choice will be relative: agents will select one of the r�best ranked alternatives
among those available at any act of choice.

Our work, and that of those authors we just mentioned, does not preclude the as-

sumption that agents are still endowed with a preference ordering. Other papers in the

burgeoning literature on behavioral economics do, and propose alternative formulations of

the actual decision process followed by individuals, as the likely source of their departures

from rationality.

1We shall provide a precise statement about non uniqueness in Corollary 1.
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Some theories abandon the hypothesis that agents are guided by one order of preferences

alone, and consider the possibility that choices might be generated by several preferences,

used in some organized manner. These include, for example, Apesteguia and Ballester

(2011), De Clippel and Eliaz (2010), Green and Hojman (2008), Houy and Tadenuma

(2009), Kalai, Rubinstein and Spiegler (2002), Manzini and Mariotti (2007 and 2012).

Other theories depart from the idea that agents maximize over the set of all feasible

alternatives. Observed choices may then be the best elements of some subset of available

alternatives, those that have been selected through some screening process. Examples of

this approach can be found in Cherepanov, Feddersen and Sandroni (2013), Caplin and

Dean (2011), Eliaz, Richter and Rubinstein (2011), Eliaz and Spiegler (2011) Horan (2011

and 2015), Lleras, Masatlioglu, Nakajima and Ozbay (2010), Manzini and Mariotti (2014).

Still another approach is to reformulate the issue of rationality by expanding the set

of observables and assuming that information may be available on more complex objects,

like sequences of tentative choices over subsets, eventually leading to a �nal selection.

This route is particularly fruitful to model decision processes that involve search costs

and stopping rules, and is taken in papers like, Horan (2010), Masatlioglu, Nakajima, and

Ozbay (2013), Papi (2012) and Raymond (2013).

Our notions of r� and ��rationability can be connected with some behavioral models,
and proven to be incompatible with others. For example, when agents can only observe a

limited number of the available alternatives, due to search costs or other limitations, they

can still guarantee that their choices on a set B will not be ranked below some threshold

�(B). Hence, ��rationalizability will be among the necessary conditions to be satis�ed
by choice functions generated by these models. Similarly, processes based on the initial

screening of r�best elements, followed by a �nal choice among them, as in Eliaz, Richter
and Rubinstein (2011),2 will generate r�rationalizable choice functions. On the other
hand, we can prove that our notion of rationality is not implied, nor implies the properties

required by other models of choice, like the ones proposed by Manzini and Mariotti (2007

and 2012), for example.3

In order to provide a �rst test of robustness for our theory that agents may be content to

choose among some of their r�best alternatives, we have performed a simple experiment,
whose results we discuss in Section 6, and that gives support to the idea that even the

strongest of our new notions, that of 2�rationality, may provide a substantial increase in
predictive value relative to the full rationality hypothesis and to some of the alternative

theories that has been proposed by other authors (Manzini and Mariotti (2009 and 2010)).

2see appendix
3We will elaborate this point in Section 5.
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The paper proceeds as follows. After this introduction, in Section 2 we formalize the

idea of r�rationalizability and provide a �rst characterization result. In Section 3 we
de�ne the degree of rationality of a choice function and provide an algorithm allowing to

compute that value. In Section 4 discuss the notion of ��rationalizability, to cover the
case where the value of r can depend on the set from which the agent can choose. In

section 5 we compare our approach with that of two important papers, just to prove by

example that our notion of rationalizability cannot be accommodated within some of the

alternative proposals in the behavioral literature. Section 6 describes our experiment and

discusses its signi�cant support to our proposal. Section 7 concludes.

2 r�Rationalizable Choice Functions
Consider a �nite set X of alternatives with #X = n � 3: Let D = 2X � f;g be the set of
all non-empty subset of alternatives. A choice function on X is a function F : D �! X

such that F (A) 2 A; for every A 2 D:
Remark 1 More generally, we can de�ne choice functions whose domains are restricted

to classes � � D of alternatives. Our general conditions will apply to these cases with

essentially no change, and hence we stick, for clarity of exposition, the the simplest case

where the domain of the functions is D.
Let R be a preference relation over the set of all alternatives X. Speci�cally, R is a

complete, antisymmetric, and transitive binary relation on X.4

Given a preference relation R on X and a subset A 2 D; let h(A;R) the maximal
alternative of a set A with respect to preference R: Formally

h(A;R) = x, xRy for every y 2 A:

Because R is complete and antisymmetric, #h(A;R) = 1 for every A 2 D.
Denote h1(A;R) = h(A;R); and de�ne for every t;

ht(A;R) = h(A�
t�1[
i=1

hi(A;R))

and

M r(A;R) =
r[
i=1

hi(A;R)

4A binary relation R on F is (i) complete if for all x; y 2 X, either xRy or yRx (ii) transitive if for all
x; y; z 2 X such that xRyRz; xRz holds, and (iii) antisymmetric if, for all x; y 2 X such that xRy and

yRx, x = y holds:
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Hence, ht(A;R) is the r-th ranked alternative in A according to R; M r(A;R) is the set of

elements in A that R ranks in r�th position or better.
To relax the assumption that an agent always chooses her best alternative, we say that

a choice function is r�rationalizable if there exists a preference relation on the alternatives
such that the one chosen for each subset is among its r�best ranked elements according
to that order. Formally,

De�nition 1 A choice function F is r�rationalizable if there exists a preference relation
R over the set of all alternatives X such that for every A 2 D;

F (A) 2
r[
i=1

hi(A;R) =M r(A;R):

Remark 2 If a choice function is r�rationalizable, it is also r0�rationalizable for r0 > r.
Remark 3 The concept of r�rationalizability does not impose any restrictions on the
possible choices of an agent for sets of size r or less. In particular, any choice function

is n�rationalizable when there are n alternatives. In fact, any choice function F on a

set of size n is (n � 1)�rationalizable by any preference relation R such that h(X;R) =

F (X), since we then have that for any A � X; F (A) 2 M (n�1)(A;R): Yet, not every

choice function is (n� 2)�rationalizable, as already proven by the second example in the
introduction.

We now introduce de�nitions leading to our main characterization result and inspired

in the intuitions we provided in the Introduction about our "bottom up" approach.

For each Y � X and r; a natural number, de�ne the family of sets Dr(Y ) = fB 2 D :
# (B \ Y ) > rg: It is on such families of subsets that our rationalizability conditions will
have bite.

Let

CrF (Y ) = fx 2 Y : for all B 2 Dr(Y ), F (B) 6= xg

be the set of alternatives that will never be chosen from any set in Dr(Y )5.

Theorem 1 A choice function F on X is r�rationalizable if and only CrF (Y ) 6= ? for all
Y � X:

Before proving the Theorem, we provide some intuitions and a Lemma that can be

seen as an alternative characterization of r�rationalizable choice functions. After those
intuitions, and having stated and proven the lemma, Theorem 1 will follow easily.

Here is how we can check for rationality and eventually construct the rationalizing

order. Let X = Y0; �rst look at the set CrF (Y0) of those alternatives that are not chosen
5Notice that if DrF (Y ) is empty, then CrF (Y ) = Y trivially.
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for any subset of size at least (r + 1). De�ne

L1 = CrF (Y0) and Y1 = Y0 � CrF (Y0):

Clearly, #L1 must be at least one: otherwise, F is not r�rationalizable, because there is
no candidate for last position in a rationalizing order. If that �rst requirement is satis�ed,

and if the size of Y1 is equal to r; we are done: F is r�rationalizable with elements in Y1
in the top of the rationalizing order. Otherwise, there will be subsets of Y1 with size at

least (r + 1). Look for those alternatives CrF (Y1) that are not chosen from any subset B of

Y0 with size of (B \ Y1) larger than r. De�ne

L2 = CrF (Y1) and Y2 = Y1 � CrF (Y1);

this set must be strictly smaller than Y1. Otherwise, there is no candidate to be the worse

alternative before those in Y1 in the rationalizing order, and F is not r�rationalizable.
If that second test is still passed, and if the size of Y2 is equal to r, we are done: F is

r�rationalizable with elements in Y2 in the top of the rationalizing order. Otherwise, there
will be subsets of Y2 with size at least (r + 1). Compute the set CrF (Y2); de�ne

L3 = CrF (Y2) and Y3 = Y2 � CrF (Y2):

Again, the set Y3 is smaller than Y2, and so on. Since the necessary conditions in that

sequence implies the nestedness of the sets Yi, and Y0 is �nite, either they stop holding at

some point, with #Yk > r (CrF (Yk) = ?), and de�ne

Lk = Yk

in which case F is not r�rationalizable, or else they lead to a set Yk of size equal to r,
de�ning

Lk = Yk = CrF (Yk)

and rationalizability holds. Su¢ ciency is easily derived by ranking di¤erent subsets in such

a way that those that are still chosen in a certain iteration are ranked above those who

have disappeared from the Yi�s in preceding steps.

Consider the partition P = fL1; ::; Lkg on X; observe that for every k < k;

#Lk � r:

Now, we can look at a preference relation RF over X satisfying:

yRFx for every x; y such that y 2 Lj and x 2 Lj with i < j

7



Lemma 1 A choice function F is r�rationalizable if and only if #Lk � r:
Proof )) Let F be an r�rationalizable choice function. Assume that R is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M r(A;R)

Let P = fL1; ::; Lkg be the above de�ned partition on X:
Assume otherwise, that is Lk = Yk;

#Lk > r

and CrF (Yk) = ?: Let y 2 Yk be such that

xRy

for every x 2 Yk: Because CrF (Yk) = ?; there exists B 2 Dr(Xk) such that F (B) = y: Since

#(B \ Yk) > r; we have that y =2M r(B;R); contradicting that F (B) 2M r(B;R):

() Let P = fL1; ::; Lkg be a partition on X such that Lk = CrF (Yk) with k = 1; ::; k and
#CrF (Yk) � r: We will show that F is r�rationalizable by RF . That is, for every A 2 D;

F (A) 2M r(A;RF ):

Assume otherwise, that there existed A 2 D such that

F (A) = z =2M r(A;RF )

Notice that

xRF z: (1)

for every x 2M r(A;RF ): Let i0 be such thatM r(A;RF )[fzg � Yi0 andM r(A;RF )[fzg *
Yi0+1: Thus, there exists x 2 CrF (Yi0) and z =2 CrF (Yi0): This implies that there exists j0 with
i0 < j0 and z 2 CrF (Yj0); and consequently zRFx; a contradiction to (1).
This concludes the proof. �

Now, we prove Theorem 1.

Proof of Theorem 1 )) Let F be an r�rationalizable choice function. Assume that
R is a preference relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M r(A;R):

Let Y be any subset of alternatives and y 2 Y such that

yRy for every y 2 Y:
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Notice that

y =2M r(B;R)

for any B such that #(B \ Y ) > r: Thus, F (B) 6= y. This implies that y 2 CrF (Y ):

() Assume that CrF (Y ) 6= ? for every Y � X: Let P = fL1; ::; Lkg be a partition on X
such that Lk = CrF (Yk) with k = 1; ::; k. Thus, #CrF (Yk) = r:
Lemma 1 concludes the proof. �

Let us show how we check for rationalizability and at the same time eventually construct

a rationalizable order, by examining two examples.

Example 2 Let X = fa1; :::; a5g. The choice function F : D �! X is de�ned as follows;

� If #B = 2; then

� i) If B = fa1; a5g, then F (B) = a5:

� ii) Otherwise, let B = fai; ajg and i� = minfi; jg; then F (B) = ai� :

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a4 F (fa1; a2; a3; a5g) = a3 F (fa2; a3; a4; a5g) = a3
F (fa1; a2; a4; a5g) = a4 F (fa1; a3; a4; a5g) = a4

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a3:

Let us check whether F is 2�rationalizable6.
According to de�nitions,

C2F (X) =
�
x : for all B 2 D2F (X); F (B) 6= x

	
= fa5g = L1

Then Y1 = X � fa5g
6Notice that F is not 1� rationalizable, since for any i there exists B such that F (B) = ai.
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Next, consider

C2F (Y1) =
�
x : for all B 2 D2F (Y1); F (B) 6= x

	
= fa1; a2g

De�ne Y2 = Y1 � fa1; a2g:
Since #Y2 = 2; therefore C2F (Y2) = Y2 = L3:
Lemma 1 implies that F is 2�rationalizable. �

Example 2 illustrates Theorem 1, with a function F is 2�rationalizable. Our next
example involves a function that is not 2�rationalizable.

Example 3 Let X = fa1; a2; a3; a4; a5g be the set of alternatives and F : D �! X the

choice function de�ned as follows,

� If #B = 2; then

� i) If B = fa1; a5g, then F (B) = a1:

� ii) Otherwise, let B = fai; ajg and i� = minfi; jg; then F (B) = ai� :

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a1 F (fa1; a2; a3; a5g) = a3 F (fa1; a2; a4; a5g) = a4
F (fa1; a3; a4; a5g) = a3 F (fa2; a3; a4; a5g) = a3

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a2:

Let us check whether F is 2�rationalizable7.
Now clearly,

C2F (X) = fa5g:
7Notice that F is not 1� rationalizable, since for any i there exists B such that F (B) = ai.
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Which implies that Y1 = X � fa5g
Notice that

C2F (Y1) = fa1; a2; a3; a4g:

But this means that, C2F (Y1) = ?: Theorem 1 implies that F is not 2�rationalizable. �

Our conditions for r�rationalizability allow us to discuss the following issues. What
is the number of possible r�rationalizations for a given choice function?. How much can
we learn about the actual ranking of any given alternative in a given preference order,

by observing the choice function of an r�rational agent who has that order?. The next
Corollary and Remark give answers to these questions for the case where choice data are

available for all subsets.8

Given r�rationalizable choice function F; let P = fL1; ::; Lkg be a partition on X such

that Lk = CrF (Yk) with k = 1; ::; k and #CrF (Yk) � r:
This allows us to provide an exact count of the number of rationalization that the

choice function F will admit.

Corollary 1 Consider an r�rationalizable choice function F: This function is rational-
izable by exactly t(F ) di¤erent orders, where

t(F ) =
kY
k=1

[(#Lk)!]

The bounds for that number are

(s1! + s2!) � t(F ) � q(r!) + s!

where n = qr + s; with 0 � s < r and q � 0; s1 + s2 = r + 1; si 2 N and 0 � s2 � s1 � 1;
corresponding to the case where the cardinality of Lk is minimal and maximal for every k;

respectively.

Uniqueness only arises for the classical case where r = 1:

Remark 4 Notice that the rank of any alternative in di¤erent rationalizations of the

same choice function will move between bounds that can be computed from the values of

the sets Y j in our iterative constructive process. These bounds may be very tight or very

loose. For some choice functions the rank of some alternatives in any rationalization may

be completely determined, while in some others it may be completely undetermined.

8If the domain � of the choice function did not contain all subsets, the multiplicity would be more

pervasive.
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3 The degree of rationality of a choice function

In this section we de�ne a natural measure of the degree of rationality that is exhibited

by a choice function F , and we then provide an algorithm that shows how we can actually

compute that degree of rationality in an e¤ective manner.

De�nition 2 A choice function F exhibits a degree of rationality r(F ) i¤F is r(F )�rationalizable,
and it is not r��rationalizable for any r�< r(F ):9

We may naturally associate this degree of rationalizability with the search for a "best

approximation" to a fully rational preference, in a similar spirit than Afriat (1973), Hout-

man and Maks (1985), Varian (1990) or, more recently, Apesteguia and Ballester (2014),

Halevy, Peisetz and Zrill (2015), and Halevy and Zrill (2016).

In our case, for any given choice function F , and any given linear order P; compute the

vector indicating, for each subset B of alternatives, the rank of F (B) according to P: Find

a P that minimizes the maximal component of these vectors across all possible preferences,

and let r be the value of the maximal component of the vector associated to P . Then, r

will correspond to F 0s degree of rationality, and any such P is an r�rationalization for F:
We turn to our proposed algorithm. We do not claim it to be particularly e¢ cient, but

it is certainly simple enough to prove that it is possible to associate a degree of rationality

to every choice function.

The algorithm follows the basic steps suggested by Remark 3 and Theorem 2. We start

by identifying, iteratively, the smallest set size such that, when choosing from all sets of

at least that size, the set of alternatives that would be eventually chosen is smaller than

the initial set of alternatives. This gives us a �rst bound on the rationality level. That

bound is de�nitely chosen if no sets of its size or more are left when removing the unchosen

alternatives from X:

Otherwise, the algorithm continues in a similar manner, but considering only the choices

from classes of sets that are nested, and eventually increasing, if necessary, the rationality

bound.

Algorithm:
Input: A �nite set of alternatives X, with #X = n � 3 and F a choice function on X:

9This notion is in a similar spirit than the exercise in Salant and Rubinstein (2006), where the minimum

number of di¤erent lists necessary to rationalize a given choice function is also calculated. But of course,

we refer to diferent concepts of rationality.
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Step 1: For r = 0; ::; n� 1; compute CrF (X);

CrF (X) = fx 2 Y : for all B 2 Dr(Y ), F (B) 6= xg

Step 2: Let r0 be such that Cr0F (X) = ? and C
r0+1
F (X) 6= ?: De�ne r = r0 + 1:

Step 3: De�ne Y r1 = X � CrF (X): Set j := 1:

Step 4: If #Y rj � r; then r� and go to step 8.

Step 5: Compute CrF (Y rj ): Notice that r < #Y rj :
Step 6: If CrF (Y rj ) = ?; set r := r + 1 and go to step 3.

Step 7: If CrF (Y rj ) 6= ?; de�ne Y rj+1 = Y rj � CrF (Xr
j ): Set j := j + 1 and go to step 4.

Step 8: The choice function F is r��rationalizable. De�ne r� = r(F ):

END.

Theorem 2 The natural number r(F ) is the minimum such that the function F is r(F )�
rationalizable.

Proof Let r� = r(F ) be obtained in step 7.

First, we will prove that F is r��rationalizable. It follows clearly from step 4 and

Lemma 1, because Lj = CrF (Y rj ) with #Lj � r:
Now, we have to prove that F is not (r� � 1)�rationalizable. Assume otherwise, that

there exists R such that for any Y � X;

F (Y ) 2M (r��1)(Y;R): (2)

The algorithm stops for r = r�: Then for r = r��1 the algorithm did not lead to Step 8,
but proceeded to steps 5 and 6. But then, the only chance for the algorithm to �nally stop

after having re-visited step 4 is that at some point it reverted to step 3, and this implies

that there exists j such that CrF (Y rj ) = ? and r < #Y rj : Notice that, for Y = Y rj (#Y > r);
and CrF (Y ) = ?. But then, Theorem 1 implies that F is not (r� � 1)�rationalizable.
This concludes the proof. �

We illustrate how the algorithm works with the following example.

Example 4 Let X = fa1; a2; a3; a4; a5g be the set of alternatives and F : D �! X the

choice function de�ned as follows for each subset of size 2 or larger:

� F (fai; ajg) = aj, with j > i

� If #B = 3; then
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� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a1 F (fa1; a2; a3; a5g) = a3 F (fa1; a2; a4; a5g) = a4
F (fa1; a3; a4; a5g) = a3 F (fa2; a3; a4; a5g) = a3

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a2:

The algorithm

Step 1: For r = 0; ::; 4; compute C0F (X) = C1F (X) = ?; C2F (X) = fa5g; C3F (X) = fa5g;
C4F (X) = fa5g:

Step 2: Set C0F (X) = C1F (X) = ?; and C2F (X) 6= ?; r0 = 1 and r = 2:

Step 3: De�ne Y 21 = X � C2F (X) = fa1; a2; a3; a4g:

Step 4: Because #(Y 21 ) > 2; then go to step 5.

Step 5: Compute C2F (X2
1 );

C2F (X2
1 ) = ?:

Step 6: Because C2F (Y 21 ) = ?; then de�ne r = 3 and go to step 3. Notice F is not

2�rationalizable.

Step 3: De�ne Y 31 = X � C3F (X) = fa1; a2; a3; a4g: Set j := 1, then go to step 4.

Step 4: Because #(Y 3j ) > 3; then go to step 5.

Step 5: Compute C2F (Y 3j );
C2F (Y 3j ) = fa3; a4g

Because C2F (Y 31 ) 6= ?; go to step 7.

Step 7: De�ne Y 3j+1 = Y
3
j � C2F (Y 3j ) = fa1; a2g: Set j := 2 and go to step 4.

Step 4: Because #Y 3j = 2 � 3 = r; then C2F (Y 3j ) = Y 3j and go to step 8.

Step 8: The choice function F is 3�rationalizable.

END.
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4 A further extension of the rationalizability concept

In this section we consider the general case where the same agent may be content, or not,

with getting her r�ranked alternative, depending on the context where this choice occurs.
For example, a larger r may be required when choosing from a set of similar alternatives,

while a smaller level of r may apply when the states involved when making a potential

mistake are larger. Our de�nitions and results are similar to those already presented,

and we shall thus be a bit more expedient in the presentation. The proofs and examples

illustrating the basic aspects of the proposed extension are presented in Appendix A.

Consider a �nite set X of alternatives with #X � 3; and a function � : D �!
f1; ::; ng that determines a level of relative ordinal satis�cing behavior for each subset B of
alternatives. We say that a choice function is ��rationalizable if there exists a preference
relation on the alternatives such that the one chosen for each subset A of alternatives is

among the �(A)�best ranked elements of the order among those in the sets. Formally:
De�nition 3 A choice function F is �-rationalizable if there exists a preference relation

R over the set of all alternatives X such that for every A 2 D;

F (A) 2
�(A)[
i=1

hi(A;R) =M�(A)(A;R):

Let r be a natural number, we say that F is r�rationalizable if it is ��rationalizable with
�(B) = r:

We now introduce de�nitions leading to our main characterization result and inspired

in the intuitions we provided in the Introduction about our "bottom up" approach.

For each Y � X and a function � : D �! f1; ::; ng, de�ne the family of sets D�(Y ) =
fB 2 D : # (B \ Y ) > �(B)g: It is on such families of subsets that our rationalizability
conditions will have bite.

Let C�F (Y ) = fx 2 Y : for all B 2 D�(Y ), F (B) 6= x, g : This is the set of alternatives
that will never be chosen from any set in D�(Y ):

Theorem 3 A choice function F on X is ��rationalizable if and only C�F (Y ) 6= ? for all
Y � X:

Proof See appendix. �

Again, we can reformulate the characterization in a form that is parallel to Lemma 1.

De�ne Y0 = X; and for k = 1; ::; k � 1;

Lk = C�F (Yk�1) and Yk = Yk�1 � C�F (Yk�1)
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and Lk = Yk = C�F (Yk�1); where k is either equal to min
C�F (Yk)=?

k or min
C�F (Yk)=Yk

k:

Lemma 2 A choice function F is ��rationalizable if and only if Yk = C�F (Yk):
Proof See appendix. �

Notice that given a function �(B) = #B; every choice function F is ��rationalizable.
Moreover, let �; �0 be such that �(B) � �0(B) for every B. If the choice function F is

��rationalizable, then F is �0�rationalizable.

5 A comparison of r�rationalizability with alterna-

tive restrictions on choice functions

As an illustration that our notion of rationalizability characterizes behavior that is inde-

pendent from the one predicated by other models, we compare its implications with those

of two proposal by Manzini and Mariotti (2007) and (2012), which they call the Rational

Shortlist Method and the Categorize-Then-Choose, respectively.

De�nition 4 A choice function F is a Rational Shortlist Method (RSM) whenever there

exists an ordered pair (P1; P2) of asymmetric relations, with Pi � X �X such that

F (A) = max(max(A;P1);P2):

Manzini and Mariotti show that choice functions of this form do not need to be

1�rational. Yet, they identify two properties that fully characterize them.
Expansion: For all S; T � X; if x = F (S) = F (T ); then x = F (S [ T ):

WARP� : If T � R � S; F (S) = F (T ) = x and y 2 T; then y 6= F (R):10

Theorem (Manzini-Mariotti (2007)) The choice function F is RSM if and only if it

satis�es WARP � and Expansion.

A second, more general proposal of Manzini and Mariotti (2012), involved boundedly

rational agents who categorize alternatives before choosing.

A shading relation on X is an asymmetric relation (possibly incomplete) � on D:
Given a shading relation � on X and a set A 2 D; de�ne the � �maximal set on A as

follows:

max(A;�) = fx 2 A : 8B 2 D with x 2 B; @ B0 such that B0 � Bg
10Manzini-Mariotti (2007) show that the axiom we write here is equivalent to one where T is limited

to be a pair, whenever all pairs are in the domain of the choice function. We formulate the axiom in this

alternative manner to take into account the possibility that not all pairs be in that domain.
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De�nition 5 A choice function F on X is Categorize-Then-Choose (CTC) whenever

there exists a shading relation � and a preference P such that for all A 2 D,

F (A) 2 max(A;�) and F (A)Py; for all y 2 max(A;�):

Manzini and Mariotti show that choice functions of this form do not need to be

1�rational. Yet, they show that WARP � fully characterizes them.

Theorem (Manzini-Mariotti (2010)) The choice function F is CTC if and only if it

satis�es WARP �.

We�ll show that choice function derived from their two models may not satisfy our

notion of rationality, and conversely, that our functions need not be of their forms.

Example 5 The example shows a 2-rationalizable choice function F that is not CTC

(and then not RSM). Let X = fx1; x2; x3; x4g; P an strict order on X; x1Px2Px3Px4,

and F be a choice function de�ned as follows:

F (A) =

(
max(A;P ) if A 6= fx1; x2; x3g

x2 if A = fx1; x2; x3g

Observe that F is 2�rationalizable but is notCTC: This is because, fx1; x2g � fx1; x2; x3g �
X; F (fx1; x2g) = x1 = F (X), but F (fx1; x2; x3g) = x2; and therefore F does not satisfy

WARP �.

Example 6 The following example shows that there exists a RSM; and consequently

CTC choice function F , that is not 2-rationalizable. Let X = fx1; x2; x3; x4; x5g be the
set of alternatives. Let R1 be the following partial order;

x4R1x1 and x5R1x2:

Let R2 be a strict order on X;

x1R2x2R2x3R2x4R2x5

Observe that,

max(fx1; x2; x3g;R1) = fx1; x2; x3g;

max(fx1; x2; x3; x4g;R1) = fx2; x3; x4g;

and

max(fx1; x2; x3; x4; x5g;R1) = fx3; x4; x5g:

Observe that for every S � X;

F (S) = max (max(S;R1); R2) :
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Then,

F (fx1; x2; x3g) = x1;

F (fx1; x2; x3; x4g) = x2;

and

F (fx1; x2; x3; x4; x5g) = x3:

Let Y = fx1; x2; x3g, observe that for each xi 2 Y there B such that #(B \ Y ) � 3 and
F (B) = xi: Theorem 2, implies that F is not 2�rationalizable.
The above examples show that our model and theirs lead to independent restrictions

on the set of possible choice functions they generate.

6 A class experiment

As a �rst test of robustness of our proposed theory, we have performed a simple experiment.

Its main purpose was to check the consistency of our data with the more demanding of

our new possible levels of rationality (2�rationality), and to compare the predictive power
of this hypothesis with that of full rationality and of some alternative views of the choice

processes.

6.1 Experimental Design

Our experiment consists in eliciting the (partial) choice function of each subject over a set

of alternatives. The task is straightforward: pick the preferred one that among a set of

alternatives, for di¤erent subsets of a grand set.

The grand set of alternatives consisted of the following �ve remuneration plans. All

of them add to the same amount of 120 cents, and propose di¤erent partial payments

staggered over three �xed dates, just three, six and nine weeks after the experiment.

Three period sequences

A B C D E
80 240 160 80 160 in three weeks

160 160 160 80 240 in six weeks

240 80 160 320 80 in nine weeks

The choice of these alternatives was prompted by two di¤erent considerations. A sub-

stantial one is that choosing among money payment schedules rather than combinations
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of goods reduces potential emotive connotations. A strategic reason was to shape the ex-

periment in a way that would allow comparisons with alternative theories, following the

lines of Manzini and Mariotti ( 2010). These authors generated full choice functions for a

grand set of four payment schedules. We enlarged the grand set by adding an additional

schedule to the same ones that they proposed. Then we elicited the partial choice function

over all subsets of size larger than two. We did not ask questions regarding pairs, since

our theory does not impose any restrictions on such choices. As a result the number of

questions and the challenge for the subjects, or their eventual fatigue, were kept very close

to those of the experiments we shall compare ours with.

The experiment was carried out at the Universitat Autònoma de Barcelona. We ran

four sessions with second-year students in two groups of the microeconomics course. The

experiments with both groups were simultaneous. The members of each group were asked

to respond to the experiment in two separate dates, with a �ve-week lag between the two.

The payment dates for the di¤erent sessions did not overlap. We shall separately treat

the aggregate results for each of the di¤erent dates as an experiment on its own, but also

discuss the relevance of having performed the exercise twice with the same subjects.

Questionnaires o¤ered the same questions in many di¤erent orders, in a stapled stack

of 16 pages, starting by instructions and followed by one page per choice problem, and each

subject had to make the choices in order, without turning pages back. Subjects did not

communicate with each other. Experiments lasted about 15 minutes, with 10 minutes of

e¤ective play, preceded by a period where an experimenter read aloud the instruction that

were in the front page of the stack, including the method of payment to participants11.

All agents were paid 120 cents participation fee at the date of the experiment, and

the staggered payments were made according to individual responses, randomly chosen in

public after thee experiment was completed.

Table 1 and 2 display sample sets of plans from which subjects were asked to choose

one.

Plan A

how much when

80 cts in 3 weeks

160 cts in 6 weeks

240 cts in 9 weeks

Plan B

how much when

240 cts in 3 weeks

160 cts in 6 weeks

80 cts in 9 weeks

Plan C

how much when

160 cts in 3 weeks

160 cts in 6 weeks

160 cts in 9 weeks

Table 1

and
11See the instructions in Appendix B.
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Plan A

how much when

160 cts in 3 weeks

160 cts in 6 weeks

160 cts in 9 weeks

Plan B

how much when

80 cts in 3 weeks

240 cts in 6 weeks

160 cts in 9 weeks

Plan C

how much when

240 cts in 3 weeks

80 cts in 6 weeks

160 cts in 9 weeks

Plan D

how much when

80 cts in 3 weeks

160 cts in 6 weeks

240 cts in 9 weeks

Table 2

The order in which the questions were posed was randomized.

6.2 Experimental results

Let us �rst remark that individuals did certainly not choose at random. With a uniform

probability distribution on each choice set, the probability of observing even only two

subjects with the same choice is e¤ectively zero for all practical purposes. In fact, as there

are a possible 310 � 45 � 5 t 3 � 108 choice function on the universal set, that probability is
(3:108)�1: But since there are 20 students with the same modal choice in the �rst session,

and 55 for the second, this clearly the hypothesis of randomness.

A total of 117 subjects participated in the �rst session, and 113 in the second. Here

are the results regarding how many of their choice functions could be fully rationalized,

versus those that would admit a 2�rationalization.

First session Second session

# % # %

full rationality 43 37 70 60

2-rationality 106 90 105 93

Table 3: Overall satisfaction of axioms

In order to compare the ability of di¤erent theories to �t the observed data, it is not

enough to just check the proportion of favorable observations, since these will de�nitely in-

crease as the theories become less demanding. Hence, we use Selten�s Measure of Predictive

Success (Selten (1991)) to compare the relative success of 1�rationality vs 2�rationality,
and later on we shall also use this measure to compare the success of 2�rationality rela-
tive to an alternative theory discussed in the literature. Selten�s measure was speci�cally
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designed to evaluate area theories like the ones considered in this paper, namely theories

that exclude deterministically a subset of the possible outcomes as not being consistent

with them. The measure takes into account not only the descriptive power of the model

(measured by the proportion of "hits", the observed outcomes consistent with the model),

but also its parsimony. The lower the proportion of theoretically possible outcomes con-

sistent with the model, the more parsimonious the model. Precisely, the measure, denoted

s, is expressed as

s = r � a

where r is the descriptive power (number of actually observed outcomes compatible with

the model divided by the number of possible outcomes) and a is the relative area of the

model, namely the number of outcomes in principle compatible with the model divided by

the number of all possible outcomes.

We �nd that Selten�s index for 1�rationality and 2�rationality in our �rst and second
experiment, respectively:

1�rationality 2�rationality
�rst experiment sFR1 t 0; 367 s2�R1 t 0; 786
second experiment sFR2 t 0; 619 s2�R2 t 0; 818

The exact calculations we shall now summarize can be found in Appendix 2. Hence, it

is not only the proportion of favorable cases that has increased dramatically, but also the

predictive success of our theory for r = 2, rather than r = 1.

6.3 Comparing theories

We have concentrated in 2�rationalizability because it is the most restrictive of our nested
concepts of r�rationality, after standard 1�rationality. But of course our theory is in
competition with other possible models, and we shall provide here a comparison that is in

accordance with the available data.

As an example, we compare our theory with that of Manzini and Mariotti , since

these authors already established that their theory was clearly superior to a variety of

others. Since even our strongest concept of 2�rationality does not impose any restrictions
on choices over pairs, it would be unfair to judge others in terms of eventual failures

directly or indirectly related to pairwise choices. As already explained in Section 5, Manzini

and Mariotti�s SRM theory imposes two restrictions on choice functions, Expansion and

WARP �; and their CTC theory only imposes WARP �.
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Because in our experiment we did not obtain the choice function data on sets of cardi-

nality 2, our calculations for RSM and CTC are an upper bound.

First session Second session

# % # %

full rationality 43 37 70 60

2-rationality 106 90 105 93

SRM 44 38 73 62

CTC 74 63 84 75

Table 4: Satisfaction of the axioms by participants in two sessions

Selten�s index for the SMR and CTC theories, according to our experimental data, is

not only lower than the corresponding index for 2�rationality, but even than that of full
rationality.

�rst experiment second experiment

1�rationality sFR1 t 0; 367 sFR2 t 0; 619
2�rationality s2�R1 > 0; 786 s2�R2 > 0; 818

SRM sSRM1 << 0; 366 sSRM2 << 0; 646

CTC sCTC1 << 0; 463 sCTC2 << 0; 743

7 Conclusions

We conclude by acknowledging some of the limitations of our present approach and by

suggesting some further lines of work.

Our analysis is limited to �nite sets of alternatives. Extending the notion of second

best or of r�best alternatives to sets with a continuum of alternatives is non-trivial. We

have already mentioned the important and recent literature on demand theory that also

considers non-maximizing agents (Gabaix X. 2014, Aguiar V. and Serrano R., 2014). Ob-

viously, it starts from an opposite end, where a continuous set of alternatives is the natural

assumption. Even if these two ends do not meet, we feel that our very simple formula-

tion of the basic choice problem is also a natural starting point. In particular, Aguiar

and Serrano�s de�nition of the "size" of bounded rationality is in a similar spirit than our

calculations of the rationality level of a choice function, in Section 3.

We also limit attention to choice functions, and one may want to see similar results for

the case of correspondences. For example, in the case of 2�rationalizability, we may want
to characterize the behavior of agents may who choose several alternatives belonging to
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their best and second best indi¤erence classes within a set. That would be consistent with

the assumption that agents�preferences may be weak orders. There are several ways to

make this idea more precise, and we discuss the issue in Appendix D.

On the positive side, the assumption that we have information on the choices over all

possible sets is not a limitative one. We can still discuss the rationalizability of choice

functions de�ned on any family of subsets, by just assuming that our � function assigns

to those sets on which we have no information a value equal to its cardinality.

Finally, if one was convinced that the present proposal is a reasonable alternative to

full rationality, it would be worth investigating the consequences on the theory of games

that would derive from assuming that agents behave accordingly.
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8 Appendix A: More on Lemma 2 and Theorem 3

Lemma 2 A choice function F is ��rationalizable if and only if Yk = C�F (Yk):
Proof )) Let F be an ��rationalizable choice function. Assume that R is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M�(A;R)

Let P = fL1; ::; Lkg be the partition on X:
Assume otherwise, that is D�(Yk) = fB 2 D : # (B \ Yk) > �(B)g 6= ? and C�F (Yk) =

?: Let y 2 Yk be such that
xRy

for every x 2 Yk: Because C�F (Yk) = ?; there exists B 2 D�(Yk) such that F (B) = y: Since
#(B \ Yk) > �(B); we have that y =2M�(B;R): Contradicting that F (B) 2M�(B;R):

() Let P = fL1; ::; Lkg be a partition on X such that Lk = Yk�C�F (Yk�1) with k = 1; ::; k
and D�(Yk) = ?: We will show that F is ��rationalizable by RF . That is, for every
A 2 D;

F (A) 2M�(A)(A;RF ):

Assume otherwise, that there existed A 2 D such that

F (A) = z =2M�(A)(A;RF )

Notice that

xRF z: (3)

for every x 2 M�(A)(A;RF ): Since D�(Yk) = ?; we have that C�F (Yk) = Yk: This implies
that there exists i0 such that M�(A;RF ) [ fzg � Yi0and M�(A;RF ) [ fzg * Yi0+1: Thus,
there exists x 2 C�F (Yi0) and z =2 C�F (Yi0): This implies that there exists j0 with i0 < j0 and
z 2 C�F (Yj0): Consequently zRFx; contradicting (3).
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This concludes the proof. �

Theorem 3 A choice function F on X is ��rationalizable if and only C�F (Y ) 6= ? for
all Y � X:

Proof: )) Let F be an ��rationalizable choice function. Assume that R is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M�(A)(A;R):

Let Y be any subset of alternatives and y 2 Y such that

yRy for every y 2 Y:

Notice that for every B such that #(B \ Y ) > �(B); we have that

y =2M�(B)(B;R):

Thus, F (B) 6= y. This implies that y 2 C�F (Y ):

() Assume that C�F (Y ) 6= ? for every Y � X: Let P = fL1; ::; Lkg be a partition on
X such that Lk = C�F (Yk) with k = 1; ::; k. This implies that Lk = C�F (Yk) = Yk: Thus,

D�(Yk) = ?: Lemma 1, concludes the proof. �

The following example illustrates the family of subsets of alternatives that we are

constructing.

Example 7: X = fa1; :::; a5g the set of alternatives. The choice function F : D �! X is

de�ned as follows; for each subset of size 3 or larger:

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a4 F (fa1; a2; a3; a5g) = a3 F (fa1; a2; a4; a5g) = a4
F (fa1; a3; a4; a5g) = a1 F (fa2; a3; a4; a5g) = a3

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a3:
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Let � : f1; ::; 5g ! f1; ::; 5g be de�ned by

�(1) = 1 �(2) = 2 �(3) = 2 �(4) = 3 �(5) = 1

That is, it has the same value for two subsets of equal cardinality.

Now clearly,

D�(X) = fa1; a2; a3; a4g

This implies that C�F (X) = fa5g: De�ne Y1 = X � fa5g = fa1; a2; a3; a4g:
Notice that

D�(Y1) = fa3; a4g:

Because D�(Y1) = fa1; a2g; de�ne Y2 = Y1 � fa1; a2g = fa3; a4g:
Consider

D�(Y2) = fa3g:

Since C�F (Y2) = fa4g; de�ne Y3 = Y2 � fa4g = fa3g:
Therefore,

D�(Y3) = ?

Lemma 2 implies that the function F is ��rationalizable. �

9 Appendix B: Instructions for the Experiment

You should not communicate with other participants during the experiment. Instructions

are the same for all participants. You are participating in an experiment to study intertem-

poral preferences, �nanced by research projects ECO 2014-53052 and SGR2014-515.

You will be paid 1,20 euros (120cts) today for having participated in the experiment.

The money is an envelope, which also contains a receipt. Take the money, sign your receipt

with your name and id number, and leave it on the table.

You will receive additional payments, as explained below.

The task.
You have in front of you a stack of 16 pages, each one displaying several payment

plans. Each plan implies payments to be made three, six and nine weeks from today. The

payments always add up to 4,8 euros, and they are expressed in cents. In each page you

will �nd several possible plans, and you must choose one of them. After you�ve made the

choice, turn to the next page and proceed to select one of the plans that are proposed in

it. Continue until the task is completed. Do not return to previous pages.
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Payments.
Today, after the experiment is over, one of the pages you have been presented with will

be chosen at random. You will be paid according to the payment plan that you chose in

that page, in three, six, and nine weeks, after the class periods of (March10, April 20 and

May 11). Payments will be made as today, and each time you must sign a receipt.

An example
In order to become familiar with the way in which the plans you have to choose from

will be presented to you, here is an example for a hypothetical case involving payments of

4 euros (400 cents) over three periods.

Plan A
How much: When:

60 cts on march 30

200 cts on april 20

140 cts on may 11

Plan B
How much: When:

100 cts on march 30

100 cts on april 20

200 cts on may 11

Plan C
How much: When:

50 cts on march 30

250 cts on april 20

100 cts on may 11

Your answer must indicate the plan according to which you would prefer to be paid,

by ticking one of the boxes.

i) Plan A ii) Plan B iii) Plan C .

Thank you for participating.

10 Appendix C: Calculations for Selten�s index

In order to compare di¤erent models we calculate Selten�s index for the �rst and second

sessions of the experiments.

Full Rationality.
In order to compute a; the "relative area" for a model we have to compute the pro-

portion of choice functions compatible with the set of axioms characterizing that model.

The number of all possible outcomes 5 � 45 � 310. For each universal set of alternatives, the
number of choice functions satisfying WARP is 5 � 4 � 3: Then the areas are:

aFR =
1

44 � 39 :

In order to compute r, we have to compute the number of actually observed outcomes

compatible with the model divided by the number of possible outcomes. The value of r
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for the �rst session,

rFR1 =
43

117

and for the second session,

rFR2 =
70

113
:

Then, Selten�s measure for the �rst session will be,

sFR1 =
43

117
� 1

44 � 39 t 0; 367

and for the second

sFR2 =
70

113
� 1

44 � 39 t 0; 619

2�rationality.
The number of all possible choice function are 5 �45 �310: To avoid tedious computations,

we set a lower bounded of s, using the following de�nition,

T = # ff 2 F : f not violating the 2-rationality axiomsg

observe that,

T <<
X
t2X

# ff 2 F : f(D) = X � ftgg :

Since # ff 2 F : f(D) = X � ftgg = 26 � 34 � 34 � 42; then

T << 26 � 34 � 34 � 42 � 5

that is,

a2�R <<
26 � 34 � 34 � 42 � 5
310 � 45 � 5 =

1

9

Value of r for the �rst session,

r2�R1 =
105

117

and for the second session,

r2�R2 =
105

113
:

Then, Selten�s measure will be,

s2�R1 >>
106

117
� 1
9
t 0; 786

and

s2�R2 >>
105

113
� 1
9
t 0; 818
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Observe that

s2�R2 > s2�R1 > sFR2 >> sFR1 :

Calculating data on SRM and CTC
Since full rationality implies SRM and CTC; and the number of all possible choice

functions satisfying WARP are smaller that satisfying WARP � or WARP � and Expan-

sion, then the areas are

aSRM > aFR and aCTC > aFR

Because in our experiment we did not obtain the choice function data of the on sets of

cardinality 2, then we calculate an upper bound value of r for the SRM and CTC models.

for the �rst session,

rSRM1 � 44

117
and rCTC1 � 74

117
and for the second session, it is

rSRM2 � 73

113
and rCTC2 � 84

113

Then, Selten�s measure for the �rst session will be,

sSRM1 <
44

117
� 1

44 � 39 t 0; 366 and sCTC1 <
74

117
� 1

44 � 39 t 0; 632

and for the second session, it is

sSRM2 <
73

113
� 1

44 � 39 t 0; 646 and sCTC2 <
84

113
� 1

44 � 39 t 0; 743

Then for the �rst session,

sSRM1 < sFR1 < sCTC1 < s2�R1

and for the second session

sSRM2 < sFR2 < sCTC2 < s2�R2 :

11 Appendix D: Choice Correspondences

In di¤erent contexts, including much of demand theory, it is sometimes natural to de-

scribe choice behavior in terms of correspondences, rather than functions. Our suggested

departures from full rationality may be extended to formulations where the basic data

involve the choice of sets, rather than that of single alternatives. In this section we provide

an elementary extension of our model to choice correspondences, we comment on related

work that is also based on that formulation, and we use our basic characterization result

to further discuss some of our experimental data.
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11.1 Extending our work to consider choice correspondences

Let X be a �nite set of alternatives, with #X � 3: Let D = 2X � f;g be the set of
all non-empty subset of alternatives. A choice correspondence on D is a correspondence

H : D �! D such that H(A) � A; for every A 2 D:
Let R be a preference relation over the set of all alternatives X. Speci�cally, R is a

complete, re�exive, antisymmetric, and transitive binary relation on X.

Given a preference relation R on X and a subset A 2 D; let h(A;R) be maximal
alternative of a set A with respect to preference R: Formally

h(A;R) = x, xRy for every y 2 A:

Because R is complete and antisymmetric, #h(A;R) = 1 for every A 2 D.
Denote h1(A;R) = h(A;R); and de�ne for every t;

ht(A;R) = h(A�
t�1[
i=1

hi(A;R))

and

M r(A;R) =
r[
i=1

hi(A;R)

We will relax the assumption that an agent always chooses exactly the best alternatives

according to a preference order, by assuming that it will be content with a subset of those

alternatives.

Given a natural number r 2 N; we say that a choice correspondence is r�rationalizable
if there exists a preference relation on the alternatives such that the subset chosen is a

subset of its r�best ranked elements according to that order. Formally,
De�nition D1 A choice correspondence H is r-rationalizable if there exists a preference

relation R over the set of all alternatives X such that for every A 2 D;

H(A) �
r[
i=1

hi(A;R) =M r(A;R):

We now introduce de�nitions leading to our characterization result, and inspired in the

intuitions we provided in the Introduction about our "bottom up" approach.

Given a natural number r 2 N; and Y � X, de�ne the subset of alternatives that

impose some restrictions on possible choice of an agent,

Dr(Y ) = fB 2 D : # (B \ Y ) > rg:
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Let

CrH(Y ) = fx 2 Y : for all B 2 Dr(Y ), x =2 H(B)g

be the set of alternatives that will never be chosen from any set in Dr(Y ).

Theorem D1 A choice function F on X is r�rationalizable if and only CrH(Y ) 6= ?
for all Y � X:
Remark D1 When Dr(Y ) = ?; we have CrH(Y ) = Y: Hence, the restriction that

CrH(Y ) 6= ? only has bite when the size of Y is at least r + 1:

11.2 Some related results

Recent work by Eliaz, Richter and Rubinstein (2011), and Frick (2016) considers agents

whose behavior is expressed in terms of choice correspondences, who do not fully maximize

(like ours) , and whose choices may be contingent to the menu from which they must choose

(as in our extension to � rationality in Section 4). Although other features of the models

and results are clearly di¤erent, we wanted to point at the clear analogy of purpose.

The paper by Eliaz, Richter and Rubinstein on �Choosing the two Finalists (2011)

is the closest to our work, although much less general. These authors characterize "top

two" correspondences that select the best two outcomes from an order, given each subset

of alternatives. Notice that this is a special case of our 2�ratinalizable choice functions,
because we did also allow the choice of subsets of cardinality less than two. We can see that

our set of 2�rationalizable choice functions would consist of all selections from some of

their "Top Two" choice correspondence which are obviously 2�rationalizable in our setting.
In a natural manner, r�rationalizable choice correspondences could also be de�ned and
characterized, and selections from them would coincide with our r�rationalizable choice
functions.

Hence, our notion of r�rationalizability is a necessary condition for all those processes
that may be described as choosing r �nalists in a �rst stage, and then using some additional

criterion to narrow down the choice from any set to a singleton. Of course, additional

restrictions could be imposed on choice functions when being speci�c about the criterion

for �nal selection. Just to illustrate this point, here are some suggestions on how to

complement the choice of two �nalists.

Assume, for example, that the �nal choice between two �nalists was to be made by a

committee that uses majority rule with tie breaking. Given any preference pro�le on the

set of alternatives X, the committee�s majority rule will be a tournament, and for each

pair of �nalists the tournament will be used as the selection device. Then, clearly the

choice function that we shall obtain will be 2�rationalizable, but not any 2�rationalizable

33



choice function could be derived from that process. This is because the committee will

choose the same alternative out of each pair x; y regardless of the set B from which these

two were picked as �nalists. Thus, a choice function selected by majority from a two-top

correspondence will satisfy the following additional condition.

Condition D1 Given fa; bg  B and F (fa; bg) = a 6= F (B) = b; there must exist

c 2 B � fa; bg such that a 6= F (C); for every C with fa; b; cg � C:
In fact, rationalizability plus condition 1 fully characterize the set of choice functions

that can be obtained from the two-stage process we describe, provided the number of

committee members is large enough. We express this fact as follows.

Remark D2 A choice function F can be generated by choosing the best two candidates

from an order and then selecting the one that has a majority in a committee of size larger

than the total number of alternatives if and only if it is 2�rationalizable and satis�es
condition 1.

We leave the detailed proof of Remark 6 to the reader, but note that it relies on the

fact that any given tournament on a set of alternatives X can be generated as the majority

relation for some committee whose size is larger than that of X (McGarvey (1953), Stearns

(1959), see also Moulin (1988)).

A further narrowing down of the preceding class would obtain if we required the selec-

tion to be made by choosing the maximal element of a transitive relation, not necessarily

the same as the one used to choose the �nalists. This particular case, where further re-

strictions should be imposed on the resulting choice function, has been studied by Bajraj

and Ülkü (2014).

Our main point is made through this analysis of the case for two �nalists. These screen-

ing processes, coupled with a criterion to choose from pairs, generate 2�rationalizable
choice functions, which may be more or less restricted in scope depending on the second

stage selection criterion.

Similarly, the choice of r��nalists, along with a choice function on subsets of size r,
would give rise to r�rationalizable choice functions, whose additional properties will be
determined by the choice function in question.

11.3 A further look at our experimental results

Here we discuss some consequences of having performed twice a similar experiment with the

same set of subjects12. Let us start by remarking that although the payment schedules had

the same structure, the payment dates were not the same: for example, the last payment

12See the experiment description in Section 6.
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in the second experiment was made after the course had already come to an end, during

the exams period. Hence, alternatives, interpreted as payment schedules in speci�c dates,

were not identical.

The fact is that the behavior of a large majority of the agents was 2�rationalizable
in both cases, and that prompted us to ask whether their behavior would be compatible

with the existence of a common preference on payment patterns (rather than preferences

for fully speci�ed alternatives, which would make the two cases non-comparable).

Notice then that one could have the same agent to be 1�rational in each of the two
experiments, and yet not even 2�rationalizable. And similar reasons could prevent the
2�rationalizability of joint actions of subjects that are either 1�or 2�rationalizable under
each separate experiment. In fact, we have calculated this joint compatibility and it pro-

vides an interesting, even if not overwhelming coincidence, as shown in the following table

(94 participants in the two sections):

First session Second session Both sessions

1-rational 37 66 12

2-rational 87 91 45

3-rational 93 94 90

Table 5: Satisfaction of the axioms of participants in two sections

Had the results contained more cases of joint rationalizability we might have argued for

some deep stability of preferences that our present results do not strongly support. But

several caveats apply. We have evidence that agents changed preferences for patterns of

payment between both experiments, but this does not necessarily mean that they changed

preferences, since the alternatives also include the dates of payment. Moreover, the subjects

did talk to each other in between experiments, and probably became aware that what they

had learned in the consumer theory part of the course could have a bearing on their answer.

In order to compare the models we calculate the Selten�s index for data of both sessions

of the experiments.

Full Rationality.
In order to compute a the "relative area" for a model we have to compute the proportion

of choice functions compatible with the set of axioms characterizing that model. The

number of all possible outcomes (5 � 45 � 310)2. For each universal set of alternatives, the
number of choice functions satisfying WARP are 5 � 4 � 3: Then the area is:

aFR =
1

(44 � 39)2
:
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In order to compute where r, we have to compute the number of actually observed

outcomes compatible with the model divided by the number of possible outcomes. The

values of r for the �rst session,

rFRb =
12

94

and Selten�s measure will be,

sFRb =
12

94
� 1

(44 � 39)2
t 0; 127:

2�rationality.
The number of all possible choice function are (5 � 45 � 310)2 : To avoid tedious compu-

tations, we set a lower bounded of s, using the following de�nition,

T = # ff 2 F : f not violating the 2-rationality axiomsg

observe that,

T <<
X
t2X

# ff 2 F : f(D) = X � ftgg :

Since # ff 2 F : f(D) = X � ftgg = (26 � 34 � 34 � 42)2 ; then

T <<
�
26 � 34 � 34 � 42

�2 � 5
that is,

a2�R <<
(26 � 34 � 34 � 42)2 � 5
(310 � 45 � 5)2

=
1

405

Value of r for both session,

r2�Rb =
45

94

and Selten�s measure will be,

s2�Rb >>
45

94
� 1

405
t 0; 476:

3�rationality.
The number of all possible choice correspondence are (5 � 45 � 310)2 : To avoid tedious

computations, we set a lower bounded of s, using the following de�nition,

T = # ff 2 F : f not violating the 3-rationality axiomsg

observe that,

T <<
X
t2X

# ff 2 F : f(D) = X � ftgg :
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Since # ff 2 F : f(D) = X � ftgg = (26 � 34 � 34 � 42)2 ; then

T <<
�
26 � 34 � 34 � 42

�2 � 5
that is,

a3�R <<
(26 � 34 � 34 � 42)2 � 5
(310 � 45 � 5)2

=
1

405

Value of r for both sessions,

r3�Rb =
90

94

and Selten�s measure will be,

s3�Rb >>
90

94
� 1

405
t 0; 955:
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